
Calculate Balloon Ascent Rate 

1. Force Balance and Buoyancy 

The vertical movement of a helium-filled balloon depends on the sum of the various forces 
acting upon it, which we will fall the net force (Fnet). These forces include the upward buoyancy 
force (FB) of the inflated balloon, the downward gravitational force exerted upon the helium 
inside the balloon (FHe), and the downward gravitational force exerted upon the balloon itself 
(Fball). This is written as 

𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐹𝐹𝐵𝐵 − 𝐹𝐹𝐻𝐻𝐻𝐻 − 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏   (1) 

Within the atmosphere, the buoyancy force exerted on an object or substance (such as helium) is 
by definition equal to the weight of the air that the object or substance displaces. Weight is 
simply the gravitation force exerted upon an object or substance. Thus, the buoyancy force of the 
helium in the balloon is equal to the gravitational force exerted upon the amount of surrounding 
air that would otherwise occupy the space filled by the helium, if the balloon and helium were 
not there.  

The gravitational force is given by 

𝐹𝐹 = 𝑚𝑚𝑚𝑚 

where m is mass and g is the acceleration due to gravity. We also know that 𝑚𝑚 = 𝜌𝜌𝜌𝜌, where ρ is 
the density of the object or substance and V is its volume. By substitution, this means that 

𝐹𝐹 = 𝜌𝜌𝜌𝜌𝜌𝜌 

The upward buoyancy force of the balloon can therefore be written as 

𝐹𝐹𝐵𝐵 = 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑉𝑉𝑉𝑉 

where ρair is the density of the surrounding air and V is the volume of air displaced by the 
balloon. By substituting this into equation (1), we get 

𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 = (𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑉𝑉𝑉𝑉) − 𝐹𝐹𝐻𝐻𝐻𝐻 − 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

which is also equal to 

𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 = (𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑉𝑉𝑉𝑉) − (𝜌𝜌𝐻𝐻𝐻𝐻𝑉𝑉𝑉𝑉) − (𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔) 

where ρHe is the density of the helium inside the balloon and mball is the mass of the balloon. 
Note that the volume of the helium and the volume displaced by the balloon are the same (if we 
neglect the very thin width of the balloon’s skin). After some factoring, we arrive at 



𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑔𝑔[(𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎 − 𝜌𝜌𝐻𝐻𝐻𝐻)𝑉𝑉 −𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏] 

The above equation assumes that the balloon is not also lifting a payload. If a payload is attached 
to the balloon, the force of gravity acting upon it (Fpay) must also be included. Thus,  

𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐹𝐹𝐵𝐵 − 𝐹𝐹𝐻𝐻𝐻𝐻 − 𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝 

Going through the same steps as above, we finally arrive at  

𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑔𝑔�(𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎 − 𝜌𝜌𝐻𝐻𝐻𝐻)𝑉𝑉 −𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝�  (2) 

where mpay is the mass of the payload. Thus, the greater the volume of helium in the balloon, the 
greater the buoyancy force to counteract the gravitational force pulling down on the balloon, the 
helium, and the payload.  

 

2. Drag Force 

As the balloon moves through the atmosphere, air resistance induces a drag force (FD) that 
directly (or proportionately) opposes the net force—given by equation (2)—acting upon the 
balloon. The drag force equation for a balloon moving vertically through the air is written as 

𝐹𝐹𝐷𝐷 =
𝑐𝑐𝑑𝑑𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣2𝜋𝜋𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2

2
 

where cd is the drag coefficient, v is the vertical velocity (i.e., the ascent rate) of the balloon, and 
rball is the radius of the balloon. Remember, the balloon must be moving for there to be a drag 
force! Since the drag force is balanced by the net force acting upon the balloon, we set Fnet = FD, 
which gives us 

𝑔𝑔�(𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎 − 𝜌𝜌𝐻𝐻𝐻𝐻)𝑉𝑉 −𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝� = 𝑐𝑐𝑑𝑑𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣2𝜋𝜋𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2

2
     (3) 

Before moving on, we can break down the equation even further by converting radius to 
diameter and substituting 𝑉𝑉 = (4/3)𝜋𝜋𝑟𝑟3, which gives us 

𝑔𝑔 �(𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎 − 𝜌𝜌𝐻𝐻𝐻𝐻)�
4𝜋𝜋 �𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2 �
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� −𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝� =

𝑐𝑐𝑑𝑑𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣2𝜋𝜋 �
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where Dball is the diameter of the balloon. This simplifies to 

𝑔𝑔 �(𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎 − 𝜌𝜌𝐻𝐻𝐻𝐻)�
𝜋𝜋𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏3

6
� −𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝� =

𝑐𝑐𝑑𝑑𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣2𝜋𝜋𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2

8
 



We are now ready to solve for the vertical velocity v. Multiplying both sides by 8, rearranging 
the variables to isolate v2 on one side of the equation, and taking the square root leaves us with 
the following equation for the ascent rate 

𝑣𝑣 = �8𝑔𝑔�(𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎 − 𝜌𝜌𝐻𝐻𝐻𝐻)�
𝜋𝜋𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

3

6 � − 𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝�

𝑐𝑐𝑑𝑑𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝜋𝜋𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2
      (4) 

This tells us that if we know the mass of the balloon, mass of the payload, and diameter of the 
helium-inflated balloon at any given time, we can calculate the instantaneous ascent rate through 
the atmosphere. However, this assumes that the balloon is a perfect sphere, which it is not. 
Therefore, the calculation should be viewed as a good approximation. 

 

3. Affect of Temperature and Density 

It is also worth noting that the density of air and helium are not constant and in fact vary slightly 
with both pressure and temperature. This relationship for can be calculated, to a good 
approximation, with the Ideal Gas Law. This law can be written as 

𝜌𝜌 =
𝑝𝑝

�𝑅𝑅𝑀𝑀�𝑇𝑇
 

where ρ is the density (kg m-3), p is the pressure (Pa), R is the universal gas constant (8.314 J 
mole-1 K-1), M is the molar mass (kg mole-1), and T is the temperature (K). The molar mass is 
0.02897 kg mole-1 for dry (unsaturated) air and 0.004 kg mole-1 for helium. Thus,  

𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎

287 ∙ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
 

𝜌𝜌𝐻𝐻𝐻𝐻 =
𝑝𝑝𝐻𝐻𝐻𝐻

2078.5 ∙ 𝑇𝑇𝐻𝐻𝐻𝐻
 

When helium enters the balloon, we assume that its pressure immediately equalizes with the 
surrounding atmospheric pressure. We also assume that it eventually warms or cools to match 
the ambient temperature. Both changes will therefore cause a change in its density as well.  

For example, if the ambient air pressure and temperature in Laramie are 77,000 Pa (770 mb) and 
293.15 K (20°C), respectively, the air density will be 0.915 kg m-3. Assuming the helium indeed 
reaches equilibrium with the surrounding environment, its density will be 0.126 kg m-3 once it 
enters the balloon. If you are instead at sea level, in Miami, where the ambient air pressure and 
temperature are perhaps 100,000 Pa (1000 mb) and 303.15 K (30°C), respectively, the air density 
will be 1.149 kg m-3 and the helium density will be 0.159 kg m-3.  



Do these density differences actually matter? To find out, let’s calculate how much helium we 
get from one helium cylinder. A T-size (300 ft3) helium cylinder, which has an internal volume 
of 1.76 ft3, is initially filled with about 1.4 kg of helium gas to a pressure of about 2500 PSI. 
(This pressure varies slightly as a function of helium temperature, which is assumed to match the 
ambient temperature.) If you released all the helium from this cylinder into a balloon, it would 
expand to about 392 ft3 in Laramie (at 77,000 Pa and 293.15 K) but only to about 313 ft3 in 
Miami (at 100,000 Pa and 303.15 K). This is of course because the helium expands inside the 
balloon to equilibrate with the ambient atmospheric pressure, which is lower in Laramie and 
higher in Miami. 

Now that we know how much helium one cylinder holds, let’s find out how much of it gets used 
in various scenarios. Let’s suppose you want your 1200-gram balloon to lift a 4500-gram 
payload with an ascent rate of 5 m s-1 immediately after launch. Using equation (4), in Laramie 
(at 77,000 Pa and 293.15 K) you would need to fill your balloon with enough helium to have a 
mean diameter at launch of 2.6 m, which equates to a helium volume of about 9.2 m3 (325 ft3). 
With a helium density in Laramie of 0.126 kg m-3, this amounts to about 1.16 kg of helium, or 
~82% of what was in the cylinder. To reach a launch ascent rate of 5 m s-1 in Miami (at 100,000 
Pa and 303.15 K), equation (4) indicates that you would need a mean balloon diameter at launch 
of only 2.43 m, equating to a helium volume of about 7.5 m3 (265 ft3). With a helium density in 
Miami of 0.159 kg m-3, this amounts to about 1.19 kg of helium, or ~84% of what was in the 
cylinder. 

It therefore appears that a slightly larger amount of helium is necessary to inflate the balloon in 
Miami, all else being equal. The difference in this case is very small (2–3%), but not totally 
negligible.  

 

4. Calculating Helium Lift 

The previous exercise sought to find an equation to calculate the instantaneous ascent rate, if we 
already know the mass of the balloon, mass of the payload, and radius/diameter of the balloon 
(which is proportional to the amount of helium in the balloon). However, we usually know what 
we want our ascent rate to be. What we actually want to know is how much helium to put in the 
balloon. There needs to be enough helium to provide the proper amount of buoyancy to lift not 
only the balloon itself, but also the payload hanging below. Furthermore, it needs to lift the 
balloon and payload not just off the ground, but upwards at some desired ascent rate. This is the 
free lift. 



This is a more challenging problem. To calculate the free lift force, we must solve equation (2). 
Although that seems easy enough, in this scenario we don’t know the volume of the balloon 
since that is determined by how much helium is added. Thus, we must start by iteratively solving 
equation (4) using different values of Dball until the solution for v is equal to the desired ascent 
rate. Once we have Dball, we can calculate the volume of the balloon and solve equation (2).  

For example, if we’d like to launch a 1200-gram balloon and 4500-gram payload from Laramie 
with a desired ascent rate of 5 m s-1, assuming an air density of 0.915 kg m-3, a helium density of 
0.126 kg m-3, and a drag coefficient of 0.25, we solve for equation (4). We find that when v = 5 
m s-1, Dball = 2.6 m. Therefore, rball = 1.3 m and V = 9.2 m3. We can then take V and plug it into 
equation (2) to calculate the free lift force. In this case, the free lift force ends up being 15.3 N. 
Dividing this by g gives us the free lift in terms of mass, which is 1.56 kg.  

There are four measurements of lift: neutral lift, free lift, gross lift, and neck lift. Neutral lift 
simply refers to the amount of lift needed to raise the balloon and its payload off the ground, 
providing what is essentially neutral buoyancy. It is equal to the mass (or weight) of the entire 
balloon system, including the balloon itself and all payload items it is carrying below it. If let go 
(and in the absence of wind), the balloon and payload will float in place, neither rising nor 
sinking. Free lift refers to the extra lift needed for the balloon to be able to carry the payload 
upward at some ascent rate. Gross lift is the sum of the neutral lift and free lift, providing a 
measure of the total lift acting upon the balloon system by the helium.  

When inflating a balloon, we use a measure called neck lift. With the neck of the balloon tethered 
to the ground during inflation to keep the balloon from flying away, we can attach a scale to the 
tether line to measure how much the balloon is “pulling upward”, but only after it acquires 
enough lift to raise itself off the ground. The extra lift that is then measured by the scale is 
appropriately referred to as the neck lift (sometimes called nozzle lift), since it refers only to the 
amount of lift that will be acting upon the payload that hangs below the neck of the balloon. 
Neck lift is calculated by adding the free lift and the mass of the payload. When the scale 
measurement is equal to the neck lift, the balloon should hypothetically be inflated with just the 
right amount of helium to carry the payload upward at the target ascent rate. In the case 
described above, the neutral lift is 5.7 kg (balloon mass + payload mass), the free lift is 1.56 kg, 
the gross lift is 7.26 kg (neutral lift + free lift), and the neck lift is 6.06 kg (free lift + payload 
mass).  

 

 

 


